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Abstraet. A model of a DC- or Ac-driven underdamped or overdamped commensurate CDW 
system withrandomlydistributedcharged impurities. andasimilarmodel ofadrivendamped 
or overdamped randomly inhomogeneous long Josephson junction are considered. The 
models are based on an underdamped or overdamped sine-Gordon equation including a 
driving term and a perturbation that describes a random lattice of local impurities, The 
lattice may be both sparse and dense, the latter being approximated by continuous random 
functions. A fundamental assumption is that initially the system contains frozen solitons 
(kinks) trapped by a disordered potential generated by the random lattice, With increase in 
the DC drive, the kinks are gradually released. The corresponding current-voltage charac- 
teristics (cvcs) are found. In the underdamped version of the model, the cvc proves to be 
hysteretic, while the overdamped version demonstrates a very pronounced threshold field. 
In the underdamped model, radiative dissipation is taken into amount too, A dependence 
of A c  conductivity on the AC frequency is also found for both models. 

1. Introduction 

It is generally believed that the non-linear conductivity of one-dimensional metals is 
accounted for by the action of impurity or commensurability pinning on a charge density 
wave (CDW) (see therecent reviews by Griiner and Zettl(1985), Horovitz (1986), Krive 
etal(l986) and Gruner (1988)). An interesting problem is to consider a joint effect of 
the two pinnings. Fukuyama (1978a) was the first to attack the problem. The aim of the 
present paper is to obtain further insight into interaction of CDW phase solitons formed 
under the action of the commensurability (Rice et a1 1976) with charged impurities. 

As is usual, we take the phase of CDW in the form q = Qx + @(x), where Q = 2kF is 
the Peierls wavenumber, and @(x) is an additional phase which varies slowly in com- 
parison with the term Qx. The CDW is commensurable with an underlying ionic lattice if 

Q = 2n(N/M)a-'  (1.1) 
(Lee el al 1974), where Nand Mare integers, and a is the lattice spacing. Under the 
condition ( l . l ) ,  evolution of the phase misfit @(x, f) is govemed by a perturbed sine- 
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694 B A  Malomed and A A Nepomnyashchy 

Gordon (SG) equation, which is a slight generalization of that put forward by Fukuyama 
(1978a): 

where cp = M@, y is a dissipation constant, fis the external electric field (voltage), E is 
thecoupling constant of the CDWtO theimpurities,x,are theircoordinates,and 0, = Qx,. 
To write equation (1.2) in terms of q (instead of the usual phase misfit @), we have 
pcrformed the scale transformation x + m x ,  f-+ V%f. This is the reason for appear- 
ance of the multipliers M - I R  and fi in front of y and E in equation (1.2). If the 
parameters M-'/?y,fand f i c i n  equation (1.2) are small, a phase soliton, which is the 
charge carrier in the commensurate CDW system, is close in form to the unperturbed SG 
kink: 

qk(x,  r) = 4 tan-! [exp{u[x - E(t)](l - u ~ ) - ' / ~ } ] .  (1.3) 
In equation (1.3). U = 2 1. E(r) = ut and U are, respectively, the polarity, coordinate 
and velocity of the kink (U? < 1). A kink carries the electric charge 

uq = 2ue/M (1.4) 
e being the electron charge. 

According to Weger and Horovitz (1982) and Horovitz and Trullinger (1984), in real 
one-dimensional metals in which the commensurability takes place, such as NbSe3 and 
TaS. the dissipation may be very strong, so that a suitable model for them is the 
overdamped sine-Gordon (OSG) equation (cf equation (1.2)): 

In the present paper we shall consider both model (1.2) and model (1.5). 
A central problem of the CDW theory is the prediction of a current-voltage charac- 

teristic (cvc) (also frequently called the I-V characteristic), i.e. the dependence of the 
current j on the DC voltagef, and to find a corresponding conductivity p ( f )  = dj/df. A 
well known theory of solitonic conductivity of the commensurate CDW systems has been 
given by Maki (1977, 1978). That theory is based on a quantum-mechanical calculation 
of a rate of production of kink-antikink pairs in the extemal DC electric field on account 
of the under-barrier tunnelling. The charged impurities do not play a crucial role in 
Maki's theory. The aim of the present paper is to elaborate in detail another model, 
based on the fundamental assumption that a t f =  0 the system contains 'frozen' kinks 
with a finite density no 4 1 (this inequality guarantees that overlapping between the 
kinks may be neglected). According to the data available (see the above-mentioned 
review papers), it seems feasible that theone-dimensional metal NbSe, may be regarded 
as a commensurate CDW state with frozen discommensurations (kinks). 

In the osc version of the model, the kinks must be unipolart, while in the SC version 
the presence of both polarities is possible. A t f =  0, the frozen kinks are trapped by an 
effective potential relief generated by the impurities. It is commonly assumed that 
distributionof the impuritiesis random (Fukuyamaand Lee 1978), so that the potential 

t Of course, in this case the CDW conductor d.o.es not bear a net electric charge: the charge density oqnoof the 
kinks (see equation (1.4)) is compensated by charge of the electrons in the valence band. 
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relief is disordered (previously, the effect of a disordered potential on an incom- 
mensurate CDW was studied by Efetov and Larkin (1977)). On increase in the voltagef, 
the trapped kinks will be released gradually (a conductivity model based on electric- 
field depinning of an incommensurate CDW has been given in detail; see the paper by Lee 
and Rice (1979) and the review by Griiner and Zettl (1985)). These are only the free 
(released) kinks which contribute to the conductivity. If n,(f) is the density of kinks 
which remain in a trapped state at a givenf, the cvc takes the form 

i = 4u(f)[no - nt(f)l  (1.6) 
where u m  is a mean velocity of a free kink. The main non-linearity of a corresponding 
conductivity is due to the dependence n,lf) .  

An important parameter of the model is a mean distance I between the impurities. 
According to Fukuyama (1978a), in a realistic model I Q  1. In this case, taking account 
of the random distribution ofx,, it seems natural to approximate the right-hand sides of 
equations (1.2) and (1.5) as follows: 

where C,(x) and c z ( x )  are Gaussian random functions subject to the correlations 

(Cl(X)) = (tz(x)) = (Cl(X)CZ(X” = 0 
(t1(x)C*(xf)) = (tZ(X)CZ(X’)) = fZS(X - x ‘ )  

(1.8) 

(1.9) 
where E* = MPz/2.1 will also be regarded as a small parameter. A different but similar 
approximation of equation (1.2) was employed by Fukuyama (1978a). In the present 
paper, we shall consider both the cases 14 1 (in the approximation (1.7)) and I9 1 
(based on the original equations (1.2) or (1.5)), in order to demonstrate that general 
consequences of the underlying idea that the kinks trapped initially by the disordered 
potential are released gradually when increasing in the DC voltage f a re  insensitive to 
detailsofthemodel. Inparticular, in theoscmodel theconductivitydemonstratesavery 
pronouncedthreshold, thethresholdvoltagestronglydependingon the concentration I-’ 
of the impurities. In the SG model, the threshold voltage is very small; at the same time, 
a noticeable feature of its cvc (I-V characteristic) is the presence of a large hysteresis. 
The discrete models (1.2) and (1.5) with IP 1 are considered in section 2, and the 
corresponding continuum models, based on the approximation (1.7), are considered in 
section 37. 

If the dissipation constant y in the SG model is sufficiently small, the dependence 
olf) and, hence, the cvc defined by equation (1.6) may be significantly affected by 
radiative losses (emission of quasi-linear waves by the kink moving through the random 
array of impurities). The radiative losses are analysed (for both cases I P 1 and I Q 1) in 
section 4. 

Finally, section 5 is devoted to calculation of the AC conductivity in the case when 
the AC voltage 

f(t) = Fcos(wt) (1.10) 
is applied to the system. In the framework of the pair production model, the AC con- 
ductivity was calculated by Maki (1978) too. In our model, the calculation is based on 

i The main results of investigation of the continuum model have been previously reported in a brief form by 
Malomed (1989). 



696 

the obvious idea that, under the action of the AC voltage, the trapped kinks perform 
small oscillations near minima of the disordered trapping potential. We develop the 
analysis for both cases 1 + 1 and I 1 within the framework of both the sc and the OSG 
models. 

In concluding section 6, we briefly discuss general qualitative predictions following 
from our model, and possibilitiesoftheir experimentalverification. However, adetailed 
comparison of the cvcs obtained in the present work (and of those found earlier by 
Malomed (1988,1989)) with experimental I-Vcharacteristics of the CDW systems which 
are likely to be commensurate is deferred to another paper. 

To conclude the introduction, we comment on the commensurability index M; see 
equation (1.1). As is well known, the phase solitons may occur in systems with M 2 3. 
At the same time, M = 1 and M =2  may be induced if an external spatially periodic 
electric field (generated by an ionic superlattice) is imposed upon an incommensurate 
CDW system. The cases M = 1 and M = 2 were discussed, respectively, by Griiner et a1 
(1981),HansenandCarneiro(1984),ApostolandBaldea( 1985)andFukuyama(1978b). 
In particular, arguments were given in favour of the presence of such ionic superlattices 
in the one-dimensional metal compounds KCP (Fukuyama 1978b, Apostol and Baldea 
1985) and NbSe, (Griiner el a1 (1981). Hansen and Carneiro (1984) and Apostol and 
Baldea(1985)emphasized that theionicsuperlatticemight containarandomcomponent 
together with the regular component. While the regular component gives rise to the 
termsin q~ inequations( 1.2)and( 1.5), the randomcomponent generates the right-hand 
sides of these equations. Also, the case M = 2 takes place if the interaction of phonons 
of two sorts with a CDW is taken into account (Horovitz 1986). So. all the values M 3 1 
are physically meaningful. The model (1.2) with M = 1 was studied in detail previously 
by one of the present authors (Malomed 1988). In the present paper we concentrate on 
the discrete models (1.2) and (1.5) with M 2 2 .  As for the continuum model (1,7), all 
results can be obtained in a general form, i.e. without specifying the value of M. Finally, 
itisnoteworthythatthecontinuummodels(1.2)and(l.7)with M = 1,(2=0,describes 
a damped driven long Josephson junction (WJ) with the maximum supercurrent density 
subject to a random spatial modulation (Mineev et a1 1981); an analogy between a 
CDW system with impurities and an inhomogeneous UJ was discussed by Barnes and 
Zawadowski (1983). At the same time, the models (1.5) and (1.7) with M = 1, C2 = 0, 
describe a randomly inhomogeneous UJ of SNS type, i.e. two bulk superconductors 
separated by a thin layer of a normal metal. In section 3, we discuss applications of the 
obtained results to the UJ theory. 

B A Malomed and A A Nepomnyashchy 

2. The discrete model (M 2 2) 

In the case 1 B 1, a r c  and other dynamical characteristics are determined by interaction 
of a soliton with an individual impurity. As is seen from equation (1.2), this interaction 
is described by the Hamiltonian 

H,”, = ~ % { i  + COS[C~(~.)/M + e.]}. (2.1) 
Insertingthekink’swaveform(l.3)(withu = O)intoequation(2.l),wefind,inthespirit 
of the perturbation theory for SG solitons (Fogel et a1 1976, Mclaughlin and Scott 1978, 
the effective potential of the kink-impurity interaction: 

& ( E )  = M3’?s[l + cos{(4/M)tan-’[exp( -uE)] + e,}] (2.2) 
where 5 represents, in fact, 5 - xn. Depending on the value of the phase parameter e., 
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I b )  

l f l  

Figure 1. The shape of the potential (2.2). (a) 
O <  8, < rz - k / M ,  rz - 2 s / M  < 8. < 
n - n/M; (c) n - n/M < 8. < n; ( d )  n < 8. 
<2n - k / M ,  (e) 2n - 2 x / M  < a,< 2n - n/ 
M, (f) 2s - x/M < 8.4 2s .  (g) A typical kink- 
trapping wellin the kink'seffective potential V(5)  
'tilted'on account of the additional term -2nfE. 

(b)  

thepotential(2.2) takesoneof theformsshowninfigure 1. Aswesee,thepotentialhas 
no more than one extremum (unlike this, in the case M = 1 the potential has two 
extrema; see the paper by Malomed (1988)). In particular, at M = 2 an explicit form of 
the potential (2.2) is 

U , ( g  = 23'2 &[1 + cos 8, tanh(af) - sin 8. sech(of)] (2.3) 
(in the case M = 2, the configurations in figures l (a )  and l ( d )  are absent). 

A t f =  0, a kink may reside either in a potential well (figures l(b) and l(c)) or in a 
wide potential valley bounded by the potential steps (figures l ( e )  and lcf)). On increase 
inf, a trapped kink escapes at an inflection point E (U"&J = 0) when, for a given e,, 

kf + WEi"*)  = 0 (2.4) 
(2zf is the drivingforce acting upon the kink). In particular, for M = 2, equations (2.4) 
and (2.3) yield 

sinhf,., = tan(e,/2) f =  ( ~ / z / ~ ) c o s ~ ( ~ , / ~ ) .  (2.5) 
To find the density n,cf) of the trapped kinks which determines the CDC (1.6), it is 
necessary to calculate the share u(f) of the trapped states that have disappeared on 
increase in the DC voltage from zero to a given valuef. In other words, u(f) is the share 
of the points Ed for which lU'(&D,)l < kf. To perform this calculation, we assume, 
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according to above, that the parameter 8, is a random quantity distributed randomly 
over the interval (0; 2 4 .  Lengthy but straightforward calculations following the lines of 
thepaperbyMalomed(1988)(wherethesameproblemhasbeensolvedfor M = 1)yield 
the following resultst. First of all, it is convenient to introduce the renormalized DC 
voltage 

B A Malomed and A A Nepomnymhchy 

g = Zf/Cf/.\/7i;iE (2.6) 
and the function B(g)  defined implicitly by the equations 

8(g) = n - (2/M) sin-'(sech E )  - sh- '[ l+ (M/2)' sinhZ c ] - I p  (2.7a) 

g=sechE[ l  + (M/2)2sinh2c]-L/2. (2.76) 

In fact, the auxiliary parameter E in equations (2.7) has the sense of Einf, so that in the 
case M = 2 these equations are equivalent to (2.5). The function 8(g) decreases in a 
monotonic fashion from O(0) = n to 8(l) = n ( M  - 2)/2M when g increases from 0 to 1. 

We shall also need the parameters g, and g2 defined by the equations 8(gl) = 
n ( M  - 1)/M and 8(gJ = n ( M  - 2)/M (gl < g2 < 1). Then an expression for the above- 
mentioned share v ( g )  of the depinned states can be written in the following form. In the 
interval 0 < g < g,, 

vsW(g) = 4 ~ 3 ~  - M M  + 1)1[n - mi. (2.8a) 

In the interval gt < g < g,, 
v ~ ( g )  = (3M - 1)/2M(M + 1) + 1[(5M - 3)/(M + l)J[n(M - l)/M- 8(g)]. 

In the interval g2 < g < 1, 
vw(g)  =2(2M-l)/M(M+1)+(2/n)[(M-l)/(M+l)][~(M-2)/M-B(g)]. (2.8~) 

In the particular case M = 2,  the dependence v(g) defined by equations (2.7) and (2.8) 
is simpler. In the interval 0 < g < a, 

(2.911) 

(2.86) 

vz(g)  = (qn) sin-] glp. 

In the interval $ < g < 1, 

v2(g )  = - t + ($n) sin-' gil2. (2.9b) 

Finally, it is easy to find v(g) for M = m. Indeed, in this limiting case there only remain 
the two configurations in figures l (a)  and l(d) of the effective potential (2.2), Einr = 0, 
andarelationbetweengandeanalogousto(2.5)and(2.7)takestheformg= sin8,i.e. 
0 = n - sin-'g. Eventually, we obtain 

vx(g)  = (2/n) sin-' g. (2.10) 
Finally, it follows immediately from equations (2.2) and (2.4) that there remains no 
trapped state at g > 1, so that in this range 

v&) = 1. (2.11) 

The dependence vM(g) for M = 2,3,4 and - are shown in figure 2. As we see, all the 
graphs are fairly close. According to equations (2.8)-(2.11), the full curve U&) has 

t These resdts have been obtained in the one-kink approximation. which is valid under the condition Ino Q 1 
(one kink per many impurities). Otherwise, many-kink contributions will be essential. 
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0 0.5 1 0  0 0 5  1 0  
g 9 

Figure 2. The dependences vy(g) defined by 
equations (2.6)-(2.11). The arrows and 1 
respectively indicate the breaks of the graphs for 
M = 2 and M = 3 (apart from the " n o n  break 
at g = 1 ) .  The curves for M = 2 and M = 3 are 
indistinguishable in the rangeg C 0.3. 

Figure 3. The corrected dependence vll(g) 
defined by equations (2.13) and (2.14). The 
arrows t and 1 have the same meaning as in 
figure 2.  

two breaks at g = 4 and g = 1 for M = 2, three breaks at g = g,, g = gz and g = 1 for 
3 s M < CO, and a single break at g = 1 for M = m. In any case, the derivative dv/dg 
diverges at 1 - g + + 0: 

The breaks at the pointsg, and& are scarcely conspicuous. 
The model considered also has a different version which yields slightly different 

results. If we take into account quantum tunnelling of the trapped kinks (Maki 1977, 
1978, Krive et QI 1987), it is natural to expect that, during a sufficiently long time, the 
kinks located to the left of the potential hump in figure l(e) or to the right of that in 
figure l(f) will tunnel under a hump and find themselves in a neighbouring valley 
corresponding to a lower-energy level. This implies that, atf = 0, the kinks may reside 
either in a potential well (figure l(b) and l(c)) or in a valley bounded by the potential 
steps in figure l(a) or l(f) from the right, and by those in figure l ( d )  or l(e) from the 
left. With regard to this, equations (2.8a)-(2.8c) are replaced, respectively, by the 
following: 

Yy(g) = P,[Z - e(g)i (2.13~2) 
v , M ( g ) =  (JdM)P, +(PI+Pl)[n(M-l)/iW-e(g)l (2.136) 
.M(g) = (n/M)(2p, + P 3 ) + 2 P z [ r r ( M - 2 ) / M - e ( g ) l  (2 .13~)  

where p ,  = (3M + 1)(2M - 1)(4zM)-l(M + l)-', p z  = (16M2 - 15M - 7) ( 1 6 ~ ~ ) - 1  
( M + l ) - ' , P , = 3 ( 5 M z - 5 M -  2) X (16nM)- ' (M+ l)-',andthefunctionB(g)andthe 
quantitiesg, and g, are the same as above. In the case M = 2,  equations (2.13) 
to (cf (2.9)) 

u 2 ( g )  = ($/rr) sin-, g'Iz (2.14a) 
for0 < g < 1/2 and to 

v z ( g ) =  - & +  (@"in-'g''2 (2.14b) 
for 4 < g < 1. The dependences (2.13) and (2.14), together with (2.10) (which is, 

dv/dg- (1 -g)-'/2. (2.12) 
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evidently, the same in both versions of the model) are shown in figure 3 (with regard to 
(2.11)). If we compare figure 3with figure 2, no real difference between the two versions 
is obvious. 

It is pertinent to compare the present results with those obtained by Malomed (1988) 
forM = I (inthatpaper, theeffectoftheunder-hump tunnellingwas takenintoaccount). 
The dependence vl(g) is, as a whole, similar to vM(g)  for M 2. In particular, at 
1 - g+ + 0 the derivative dv,/dgdiverges according to equation (2.12), and the graph 
vI(g) demonstrates a break at g = 4 x 3-jI2 (apart from the break at g = 1). 

The central point of the subsequent analysis is to relate the density no - n,of the free 
kinks to the quantity I&). This relation proves to be different in principle in the SG and 
OSG models. A fundamental reason for the difference is the following: in the SG model, 
a characteristic critical field - &providing the release of a pinned (trapped) kink is much 
greater than the minimum value (about y&; see below), admitting free motion of the 
kink (McLaughlin and Scott 1978) so that a kink, once released, will remain free; in the 
OSG model, where the kink’s law of motion is purely dissipative, a released kink will be 
pinnedagain by any vacant potential well. Therefore, theosG model becomesconductive 
at a value of f a t  which the density of pinned states, which decreases on increase in f, 
becomes equal to the density of kinks (Malomed 1988, 1989). In the SG model, the 
threshold for the onset of conductivity is much lower. At the same time, in the SG model, 
collisionsbetweenfree and pinned kinksmust be taken intoaccount. Let usnow proceed 
with the details of the calculations. 

B A Malomed and A A Nepomnyashchy 

2.1, Thescmodd 

It is natural to expect that in the SG model (1 2 )  the density of free kinks is related to the 
share v ( g )  of the released pinned states as follows: no - n, = not&) (recall that no is the 
total density of the kinks in the system). Insertion of this relation into equation (1.6) 
immediately yields the cvc (Malomed 1988) 

i = w(f)nov(g). (2.15) 

The velocity u(f) of a free kinks is given by the well known expression of McLaughlin 
and Scott (1978): 

(2.16) 

where 
Strictly speaking, equation (2.16), as well as (2.20) (see below), pertains to the 

homogeneous system (E = 0). However, it will be seen that in all cases of interest they 
are surely relevant as expressions for a mean velocity, except for the range of smallf, 
f 6 y&. In that range, the moving kinks are captured by potential traps in the form of 
steps(figuresl(a) and l(d)) and humps(figures l(e)andl(f)). Thismeans thatsolitonic 
conductivity is absent unless the voltage exceedsa threshold valuefo - y*. Under the 
condition* + y .  thevaluef,canbefoundinanaccurateformfrom theenergyequation 
4u2 = (rf/Zy)? = U,,,,, U,,, being amaximum height of the potential hump (McLaugh- 
lin and Scott 1978) (see also the papers by Sakai etal(1987) and Malomed (1988)). It is 
easy to find that U,, = 2 M 3 k  sinZ(z/M) for M 

f$ = ( ~ / Y C ~ ) M ~ ~ ~ ~ ~ E  sin*(n/M). (2.17) 

Equation (2.16) for the cvc is valid if collisions with the free kinks do not result in 
release of the trapped (pinned) kinks, i.e. the collisions do not alter the density of the 

r i ( f )  = (1 + (47/.~f)~]-’’~ 
= M-’” y (see equation (1.2)). 

2 (U,,,, = 2e for M = l ) ,  so that 
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free kinks. Let us analyse the collisions in some detail in order to find conditions which 
guarantee that this important assumption holds indeed. 

In the presence of the external force (voltage) f, the potentials shown in figure 1 
become ‘tilted‘ because the term - 2 ~  must be added to the kink’s potential energy 
(2.2). A typical well trapping a kink in the tilted potential is shown in figure l(g). The 
trapped kink rests at the potential minimum E = E,,,. 

In the lowest approximation, the collision of a trapped kink with a free kink moving 
with a velocity U results in a rapid shift of the coordinate E of the trapped kink by the 
amount (Zakharov et a1 1980) 

A t  = -C log[(l + -)’/U’]. 
The trapped kink shifts to the left (from the viewpoint of figure l(g)) if the free kink has 
the same polarity?) and to the right in the opposite case. 

As is seen from figure l(g), in the former case the kink remains in the pinned state if 
its shifted position E = Emin + AE lies to  the left of the point 5 = 56, conjugate to the 
potential maximum E,,,, i.e. s Emin - 51,. Evidently, E,,, - 56, - E/fatf=5 E 
(there is no potential well a t f +  E ) .  For lAE1 the following estimates are valid: in the 
‘non-relativistic’case U‘ Q 1, i.e.f’ Q y2 (see equation 
‘ultrarelativistic’ case 1 - U’ Q 1, i.e. f %  y ,  1AE1= 2 
IAEI - 1 in the intermediate case (1 - u’)/u’ - 1. 

To guarantee that the collision does not result in release of the pinned kink, we must 
demand that Q Emi, - Eha,. This inequality must be investigated separately at f - 
fo - y 6  (see equation (2.17)) and at f - E (see equation (2.5)). Using the above 
estimates, it is straightfonvard to conclude that atf- y f i  we need 

f i I o g E - 1  B y  

while the range f - E gives rise to a stronger inequality 

E @ , Y  (2.18) 

which will be assumed to hold (in the SG model) in what follows. 
In the case of the kink-antikink collision, when the pinned kink shifts to the right, it 

will not be released if its shifted position lies to the left of the potential maximum E,= 
(see figure l(g)). So, in this case, we must demand that AE Q Emax - Emin. Analysis 
similar to that developed above, but slightly longer, demonstrates that this inequality 
amounts t o f% rp!3~-1’3. Insertingf- E into the latter inequality, we recover the con- 
dition (2.18). At the same time, the range f -  y f i  gives rise to a more restrictive 
inequality 

E B y’/5 

which will be assumed to hold in the SG model if both polarities are present. 
A full analysis of the collision of a free kink with a kink or an antikiok pinned by a 

local potential well will be given elsewhere. 
As follows from equations (2.6)-(2.14), of basic interest is the range of voltages 

f -  E.  According to the relation (2.18), this implies that f % y. The latter inequality 
means, according to equation (2.16), that u(f) is close to unity. So equations (2.8)- 
@.U), (2.13) and (2.14), together with figures 2 and 3, directly determine the form of 
thecvcintherangef3s.  

t In fact, in this caSe the former free kink becomes pinned. while the former pinned kink i s  released 
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The cvc departs from the dependence u(f) in the range f S y and, as explained 
above, it terminates at the threshold value (2.17). 

Finally. it is important to stress that a full CVC is hysteretic. Indeed, if the DC voltage 
fincreases from zero, one will observe the branch of the cocdescribed above. However, 
iffdecreases from the valuesf> (i.e. g 3 1; see (2.6)), we shall observe the 
usual branch of the cvc (2.15). corresponding to vu) = 1, up to the terminal value 
(2.18). The full cvc is shown (for the continuum model (1.7), where the breaks are 
absent) below in figure 5. Iff increases from zero to an intermediate valuef=fi - E ,  
and then turns back, one will Observe an intermediate branch (see broken curve io figure 
5 )  corresponding to v(f) = v(fl). 

2.2. The OSG model 

The fundamental difference between this version and the SG model is the fact that, on 
increase inf, the system remains non-conductive as long as the total density n , u )  of the 
kinks which may be in the trapped state is larger than their total density no (Malomed 
1989). The quantity n,(f) can be easily expressed in terms of v(f): 

“r 

n , ( f )  C v (mf )  (2.19) 
m = l  

where /-’ 4 1 is the density of impurities, The terms with m > 1 in the sum (2.19) take 
account of the fact that the impurities for which the value of U’(5) at E = Einf is equal to 
Zzmfor higher can trap m unipolar kinks, the distance between which varies as logf-I. 
Becauseofthelattercircumstance, thesummationin(2.19)must belimited bym,, - I /  
logf-I. Since the maximum value o f f  at which the impurities can detain the kinks is 
fma, = V%E/n (which corresponds to g = 1; see (2.6)). in the range fmJ2 <f<fmax 
there remains the single term with m = 1. The dependence n,(f) has breaks at the values 
f=f,.&n, and less conspicuous breaks a t f = f l , d m ,  wheref,., <fman are the values 
marked by arrows in figures2 and 3, at which the dependence v(f) demonstrates breaks. 
So, the system is not conductive atfsuch that no < n,(f) (the case no > n,(O) is excluded 
by the underlying assumption no l),  and in the range where no > nt(f)  its cvc is given 
by equation (2.15). The velocity of a free kink in the OSG model is 

(cf equation (2.16)). 
It is necessary to note that the solitonic conductivity of the OSG model is of the relay 

type; when a moving kink encounters a unipolar trapped kink (or a cluster of trapped 
kinks), it stops and becomes trapped. while one of the formerly trapped kinks becomes 
free. In fact, the same pertains to the SG model when unipolar kinks collide (under the 
condition (2.17)). 

The aforementionedparticularcasen, Q l-’(one kink permanyimpurities) deserves 
special attention. In this case the valuef= fo at which nc( f )  = no is close tofmax where 

and the cvc takes the form shown in figure 4. This cvc is not hysteretic, unlike that of 
the SG model. 

3. The continuum model 

Our analysis of the models (1.2) and (1.5) with the right-hand side (1.7) is based on the 
well known expression for the probability-density functional of the Gaussian random 
fields: 

4f) = E f 4  (2.20) 

Vmax - f~ ) f , : x  - (no[)’ Q 1 (2.21) 
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Figure 4. The cvc (I-V characteristic) (2.15) of 
the overdamped SG model (1.5) in the caSe no -=S 
1.' a 1. The broken straight line corresponds to 
" ( f )  = 1. 

Figure 5. The hysteretic cvc (I-Vcharacteristic) 
of the SG continuum models (1.2) and (1.7). The 
arrows indicate the sense of the particular 
branches of the cvc. 

(3.1) 

An effective one-kink potential corresponding to the right-hand side (1.7) of equations 
(1.2)and(lS)is(cf(2.1)) 

where 
UI(2) E M{1 + cOs[M-'qk(z)]} U2(2)  = M(1 - s in[M- 'q , ( z )]}  

(3.3) 
qk being the kink's waveform (1.3). 

values inf 
calculation of a corresponding Gaussian continual integral yields 

where 

The required quantity u(f) is determined by a probability distribution p(f)  of the 
(1/2x)U'(&) at the inflection points &or(U"(Es) = 0). Straightforward 

(3.4) 112 -1 PCfi,r) = 2(Zn/li) E e x p ( - ~ 2 f k r / ~ i E 2 )  

(3.5) 

(besidesI,, we shall also need I 2  and Z3). It is evident that 
f 

~ ( f )  = I p(fi.r) dfci = erf(aXf/. \r i ;E) ( 3 4  
0 

where 

erf(z) E 2x-'/' loz exp(-t2) dt. 

3.1. The SG model 

In the SG version of the continuum model, insertion of equations (3.6) and (2.16) into 
(2.15) yields the cvc shown in figure 5. As was explained in the preceding paragraph, 
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this cvc is hysteretic. As in the discrete model, we need the condition E B y in the case 
of unipolar kinks, and E 4 in the opposite case to guarantee that collisions between 
free and trapped kinks do not change v ( n .  Note that, from the viewpoint of equation 
(3.6), the rangef- E is of basic interest. Because of the conditions mentioned, in this 
rangef> y, so that u ( f )  is close to unity, and the form of the CDC coincides with the 
dependence (3.6). Finally, it is noteworthy that the CDC of the continuum SG model, 
unlike the cvc of the discrete model, demonstrates no breaks. One may regard the 
continuum-model cvc as a ‘smoothed version’ of the discrete-model cvc. 

We mentioned above that free kinkscan be trapped again by local potential barriers. 
To avoid this effect. it is necessary to demand that the values taken by the random 
functions c1,:(x) be limited by some (,,,% such that y2tmx 4 E’. Strictly speaking, the 
limited random functions cannot be Gaussian. However, it is easy to see that, owing to 
the assumed inequality E 4 y ,  the limitation is not significant. ~~~~ For ~ small f, the cvc 
terminatesat the threshold valuef=fo - y G < ~ F < c f  (2.18)). 

B A  Malomed and A A Nepomnyashchy 

3.2. The OSG model 

In the OSG version of the continuum model, the central point is to find the maximum 
density nl(f) of the kinks which can be detained in a trapped state at a givenf. This 
densityisproportional to the mean densityi-1 ofthe inflection points EinV Usingstandard 
methods (see, e.g., section 3.4 of the book by Ziman (1979)). one can find that = 
J C - ~ ( I ~ / ~ ~ ) ~ ~ ’ ,  being defined in (3.5). Evidently, l i s  of order unity, in contrast with 
thc discrete model where we assumed that I * 1. 

As above. the system becomes conductive a t f=  fa such that n,(fo) = no. Because of 
the underlying assumption no Q 1, it is necessary that 1 - v( fo)  - n o  4 1, i.e. fo E .  

Using equation (3.6), it is easy to find that 

(3.7) f Z  - - ( I , jb ’ )&’  log no’ 

(to simplify equation (3.7), we have strengthened the assumption no < 1 to 
log no’ %- 1). In the rangef3fo ,  many-kink contributions to nt(f) may be neglected, 
and it takes the form 

.,(a = i;’vCf) = ~ - 5 l ~ ( 1 ~  I ~ / I ? ~ E ~ - I  exp(-2.zZfZ/IlE2). (3.8) 
So, insertion of equations (3.8) and (2.20) into equation (2.15) yields the cvc of the 
continuum OSG model: 

i = 9no(?rf/4y)U - e x ~ [ - ( 4 ~ ~ f 0 i ~ ~ ~ ’ ) ( f - f ~ ) l }  (3.9) 
fo being defined in (3.7). The cvc (3.9) is qualitatively similar to that shown in figure 4. 
However, there is no sharp break at f= fma ,  and the size of the transient range is (cf 

( f m x  -fo)fi’ - l/lognol. (3.10) 

Thus. we can again infer that, proceeding from the discrete model to the continuum 
model, we obtain a similar cvc but in a smoothed form. 

(2.21)) 

3.3. Additional comments 

As we mentioned in section 1, equation (1.2) with the right-hand side (1.7), where 
M = 1 and tz = 0, coincides with the model of a damped randomly inhomogeneous 
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driven UJ proposed by Mineev et a1 (1981). The only difference is that in the UJ theory 
the quantities u(f)[na - n,(f)] andfhave the opposite meanings to those in the CDW 
theory; the former is proportional to the DC voltage across the junction, while the latter 
is the density of the DC bias current. As to the kink (1.3), it represents a fluxon, i.e. a 
magnetic flux quantum. The overdamped model (1.5) describes a driven UJ of SNS type: 
two bulk superconductors separated by a thin layer of a normal metal. In a real UJ, an 
important role may also belong to random inhomogeneities of the junction's inductance 
(Sakai etall987) and capacity (Malomed and Ustinov 1990). They are accounted for by 
the additional terms 

[<3(x)lrVz + 54(x)P)n (3.11) 
in the right-hand side (1.7) of equation (1.2) (with M = 1, C2 = 0). Here <3.4(x) are 
Gaussian random functions subject to correlations (1.8) and (1.9) with replaced by 
some g3 and i4. All the equations (3.4)-(3.10) are directly applicable to this variant of 
the continuum model, with the modification that in equation (3.2) the summation index 
p takes two values 1 and 3, where U&) = -4(C3/f) sech'x. 

It is also natural to consider a discrete model of a randomly inhomogeneous IJJ based 
on the equation (cf equation (1.2)) 

~ , ~ + y a , !  -qU +sin q + f =  2 e ,  sin a, ~ ( x - x , )  (3.12) 

where 19 1 and the parameters E" are subject to the Gaussian distribution (cf (3.4)) 

P ( E , )  = ( f i t ) - '  exp(-Ef/$). (3.13) 

The model described by equations (3.12) and (3.13) can be realized in an experiment as 
a UJ with a random lattice of the so-called micro-resistors (E, > 0) and micro-shorts 
( e ,  < 0), i.e. local defects where tunnelling of the superconducting electrons across the 
dielectric barrier is, respectively, suppressed (E ,  > 0) or enhanced (E ,  < 0). Inves- 
tigationofthemodel(3.12) and(3.13)yieldsresults whichare thesameasthoseobtained 
in the framework of the corresponding continuum model. 

It is noteworthy that the models (1.2) and (1.5) with the terms (1.7) and (3.11) on 
the right-hand sides are applicable, with slight modifications, to a number of other 
physical objects. Examples are disordered quasi-one-dimensional ferromagnets (Kiv- 
shar et a1 1986), and an atomic-chain continuum model of the Frenkel-Kontorova type 
with a substrate potential containing a randomly modulated component. 

Toconclude this section, let usmake one more comment concerningthecDwsystem. 
To observe the cvcs derived in the preceding and present sections, it is necessary to 
include a CDW conductor in a closed electric circuit. Our analysis assumed tacitly that 
the conversion of the charged solitons into conductivity electrons, and vice versa, at 
junction points between the CDW conductor and metallic conductors did not change the 
total number of solitons (a microscopic model of the conversion was put forward by 
Kriveetal(l987)); in principle, one may also consider a closed ring-like Cow conductor 
(cf a ring-like UJ realized in the experiment of Davidson et a1 (1985)), in which the 
driving DC voltage is induced by a vortex electric field. 

The soliton number conservation can be readily realized in a UJ of a finite length; if 
an external magnetic field is absent, the corresponding pelturbed SG equation must be 
supplemented by the boundary conditions qx = 0 at the junction edges (see, e.g., the 
book by Barone and Paterno (1982)). Because of these conditions, a moving soliton 
(fluxon) will be reflected by an edge in the form of an antifluxon. This effect is the basis 
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for explanation of the so-called zero-field steps on a junction’s cvc as a manifestation of 
fluxon oscillations between the reflecting edges (Fulton and Dynes 1973). 

4. Radiative effects 

If the dissipation constant y in the SG model (1.2) is sufficiently small, radiative losses in 
the form of emission of quasi-linear waves may essentially affect the kink’s law of motion, 
i.e. theformofthecvc. Weshallanalyse theradiativelossesbymeansoftheperturbation 
theory for SG solitons based on the inverse scattering transform (IST). A variant of 
this theory suitable for the emission problems has been given in detail by Malomed 
(1987a, b). In terms of the IST technique (Zakharov er a1 1980), a radiative component 
ofthesc wave fieldisdescribed byanamplitudeB(k),kbeingtheradiation wavenumber. 
The spectral density of the radiation energy E can be expressed in terms of B(k)  as 
follows: 

B A Malomed and A A Nepomnyashchy 

%(k)  = dE/dk = (4/)5) IB(k)lZ + O(IB(k)/‘)). (4.1) 
The “based perturbation theory rests upon the perturbation-induced evolution 

equation for B(k) derived by Kaup and Newel1 (1978) and others. For one kink, this 
equation can be represented in the following form (Malomed 1987a, b): 

CX 

( a 2  + v 2 ) - l  1. & p[qk(z)]QZ - v 2  - 2ivL tanh L) exp(-ikx + iwr) dB(k) if 
dt 4 

-=__  

(4.2) 
where v z  (x  - ur)(l - u2)-’” ,  
+ K ( ~ )  is the kink‘s waveform (1.3) and i P [ q ]  is an emission-generating perturbation in 
the right-hand side of the SG equation.; The further analysis is in principle different for 
the discrete and continuum models, although eventual results prove to be quite similar. 

4. I. The discrete model 

In the case 1 B 1 (recall that I is the mean distance between the impurities), the first step 
is tocalculate theenergy Eemittedbya kinkcollidingwithanisolatedimpurity. For the 
case M = 1 this problem has been solved by one of the authors (Malomed 1988). The 
general idea is evident; assuming that B(k) = 0 at f = - (prior to the collision), 
calculate the final value 

$(l + u)(l - U)‘!, A = &(k + w). w = (k’ + l)’”, z 

B,(k) = B(k, t = + m) = dt. (4.3) 

Next, insert the value (4.3) into equation (4.1), and calculate the total emitted energy 
+a 

E(u) = I Z(k) dk. (4.4) 
..E 

The total energy (4.4) can be found in an analytical form in two limiting cases: u2 
and 1 - u2 Q 1. In the former case, 

if E <  o2 Q 1 (Mineev er a1 1981), and E - exp(-c/&) with c - 1, if uz Q E (Malomed 

1 

E(u)  - exp( -x/u) (4.5) 

t The amplitude B(k)  is related to b(A) defined by bkharov etal(1980) as follows: B(k)  a b(A) exp(ior). 
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1985,1988). These estimates are valid irrespective of the value of the commensurability 
index M .  

Inthelattercase(1 - U* Q l), whichisofthemostinterest,realizationoftheoutlined 
programme for calculation of E ( u )  encounters a difficulty. We shall explain it in detail 
for M = 2. Substitution of the right-hand side of equation (1.2) into equation (4.2) yields 
a term 

( ~ / 4 )  sin 0, (Az + vz)-'{d2 - v Z  + 2irA tanh[ut(l - u ~ ) - " ~ ] }  

x tanh[ut(l - u2)-1'2] exp(iwt). (4.6) 
Insertion of the term (4.6) into equation (4.3) gives rise to a divergence. This divergence 
is of a rather general nature, and a general way to circumvent it is as follows (Malomed 
1987a, b): insert q ( x ,  t) into equation (4.2) in the form 

q(x,t) = q'o'(x) + P)R(X, t, (4.7) 
where the background field q(O'(x) is a solution of the linearized version of equation 
(1.2) far from the kink (at ] X I +  m). A resultant SG equation for the renormalized 
wave field q R ( x ,  t) contains a new renormalized perturbation PR which gives rise to no 
divergence. In particular, for M = 2, 

q ( " ) ( x )  = (42)  sin 0. exp( - Ix - x , l )  sgn t 

EPR = i COS e, sin q R  S(x - x,) + 2q(" sin2 q R  

(4.8) 

+ i- sin 0. S(x - x,)(cos P)R - sgn t) 

- esin e,, exp( - Ix - x,l)S'(t) + O ( P )  (4.9) 
(recall that we are considering an isolated impurity, and that = V%E; see equation 
(1.2)). The multiplier sgn tin equation (4.8) (it gives rise to the term -S'(t) in equation 
(4.9)) arises because cos [qk(t+ k m)] = sgn t (for definiteness, we set U = +l in 
equation (1.3)). 

Calculations with the perturbation (4.9) prove to be extremely tedious. In the case 
M > 2, when not only COS qk but also sin 'pX takes different limiting values at t +  2 m, 
the renormalized perturbation and calculations based on it are still more laborious. 
However, there is a less rigorous but much simpler approach. Indeed, let the evolution 
equation (4.2) have the form 

dB(k)/dt = F(k, t) exp(iwt) (4.10) 

where the function F(k, r )  takes different limiting values at t +  t 
a solution to equation (4.10) in the form 

(cf (4.6)). We seek 

(4.11) B(k ,  t) = - (i/w)F(k, r )  exp(iwt) + B R ( ~ ,  t )  

where BR(k, t) is governed by the equation 

dB,(k)/dt = - (i/w)[dF(k, t)/dt] exp(iwt). (4.12) 

While the quantity Br(k) defined according to (4.3) is divergent, the analogous quantity 
[B,(k)lR,defined byinsertingequation(4.12) into(4.3), isconvergent. Note that replac- 
ing Bf (k )  by the renormalized [Bf(k)IR is equivalent to integration by parts in (4.3). 
The meaning of this simplified version of the renormalization procedure is that BR(k) 
represents the amplitude of the emitted radiation proper, while the first term in (4.11) 
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describesanon-radiation background field equivalent to (p(”(x) in (4.7). It is easy to see 
that interference between the two terms gives no actual contribution to the emitted 
energy when the sum (,4.11) is inserted into equation (4.1). In this way, we obtain for 
M = 2 the following emitted energy spectral density (we assume that u2 P E ,  but the 
inequality 1 - u2 -d 1 is not required): 

%(k) = ( & / 4 ) ~ - ~ ( 1  - U’) 

B A Malomed and A A Nepomnyashchy 

x [sin2 8, cosh2{n[(l + k2)(1 - 02)]’fi/2u) 

+ COS’ e, sech2{x[(l + kz)(i - u2)]’”/2u]}II. (4.13) 

In the limit U’ 4 1, the corresponding total emitted energy (4.4) is exponentially small 
in accordance with (4.5). In the opposite limit 1 - u2 + I, 

E = E2 sin28, (4.14) 

does not vanish, in contrast with the case M = 1, where E = k 2 ( 1  + sin2 e,)(l - u2)ln 
(Malomed 1988). The limiting forms of % ( k )  and E for 1 - u2- 0 can also be found for 
arbitrary M 2 2: 

$(k) = z-’fz(l -t k2)- ’  sin2(n/M) c d ( e ,  + n/M + k m / h f )  (4.15) 

E = Fa sin2(x/M) cos2(8, + z / M  + h m / M ) .  (4.16) 

The additional integer m in these expressions indicates that we may add 2xm to the 
kink’s waveform (1.3). Evidently, in the case M = 2, (4.15) coincides with the limiting 
form of (4.13), and (4.16) is equivalent to (4.14). Note that (4.15) and (4.16) become 
zero at M = 1. in accordance with the above. 

The kink’s law of motion is determined by the energy balance equation 

2xfu = 8vu2(1 - u2) - ’ / ’  + “(U) (4.17) 

where the first term on the right-hand side gives the rate of dissipative energy losses, 
and the second term is the energy emission rate 

W(u)  = I-’u(E(u)) (4.18) 

the angular brackets indicating averaging in the phase e, (Malomed 1988). It is important 
whether the dependence W(u)  is monotonic. In the case M = 1 it is non-monotonic. 
which givesrise to a radiative hysteresisin the range 

(8 /xZ)e ’y /1~  (2nf)2 5 (E ’ / / ) ’  (4.19) 

provided that 

8yl-d E’ (4.20) 

(Malomed 1988). The dependences of the quantity uE(u) on U are shown for M = 2 and 
different values of 8, in figure 6. Evidently, averaging in 0, is equivalent to setting 8, = 
n/4. As is seen from figure 6, at B. = x/4  the dependence is not hysteretic, so that the 
radiative hysteresis does not take place at M = 2; it seems very similar that at M > 2 it 
does not take place either. Nevertheless, under the same condition (4.20) the emission- 
affected cvc for M > 2 differs significantly from the usual one in the range 8y < 2~f < 
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Feure 6. The dependences of oE(u)/E2 on v for 
M = 2 and different values of 8.. On increase in 
e,, the dependence ceases to be non-monotonic 

” at 8. = z/4 

~’/l(cf(4.19)) (figure7). Notethat thesevaluesoffaremuchsmallerthanf-   at which 
the hysteresis studied in section 2 (figure 5) takes place. 

4.2. The continuum model 
If emission of radiation is generated by the perturbing term (1.7), it is natural to define 
the spectral density W ( k )  of the energy emission rate W. According to equation (4.1), 

W(k)  = dW/dk = (d/dt)[%(k)] = 8n Re[B(k) dB*(k)/dr] (4.21) 

where Reand * represent thereal partandcomplexconjugation, respectively. According 
to the papers of Malomed (1984,1987a, b), the quantity B ( k )  in equation (4.21) can be 
obtained by integrating equation (4.2) in time, in the limits - = < r ‘ < f ,  with the use of 
aformal trick; the right-handside of (4.2) must be multiplied by exp(pt) with an infinitely 
small ,u > 0. The trick implies adiabatically turning on the emission process ‘turned off 
at r = - =. After the integration, p must be set equal to zero with regard to the known 
relation 

(4.22) 

P being the symbol for the principal value (when the expression (4.22) is inserted into 
an integral). Straightforward calculations which can be performed in a general form, 
yield the following result: 

W ( k )  = 2u(%(k)) (4.23) 

lim (ix + p)-l = P(l/ix) - i s h )  
P-0 

(4.24) 

(cf (4.18)), where (53) and (E) are the spectral density and the total emitted energy for 
an isolated impurity averaged in 8, (see above). The parameter i in the corresponding 
expressions for (‘8) and ( E )  (see, e.g., (4.13)-(4.16)) must be taken to be the same as 
in equation (1.9). So, the radiative effects in the continuum model are quite similar to 
those in the discrete model. In particular, at M = 1, substitution of the expression 
@(U)) = E2(1 - U’)’/’ for 1 - u ’ 4  1, taken from the paper of Malomed (1988), into 
equation (4.24) yields 

(4.25) 

In this case (M = l), radiative hysteresis may take place. As follows from a comparison 

W=2E’(1 - 0’ ) ‘  ’ P  
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f w 

Figure 7. The emission-affected dependence ucf)  
forM = 2underthemndition(4.20).Thebroken 

Figure 8. Dependence of the AC conductivity 
[p(w) l  on ihe AC frequency w in the continuum 

a w e  corresponds 10 the usual dependence 
(2.16). 

model:curveA.scversion;cuNeB,OsGversion. 

ofequations (4.18) and (4.24). weshould set I - 1 in the correspondingestimates(4.19) 
and (4.20) for the continuum model. It follows from (4.19) (with I - 1) that the radiative 
hysteresis and the hystemis in the range f - E revealed in section 3 must be easily 
distinguishable. 

Toconclude the present section, let us brieflydiscussradiativeeffectsinu~sdescribed 
by continuum models similar to (1.2) and (1.7). As we mentioned above, the simplest 
model of this kind is that with M = 1 ,  f 2 ( x )  5 0. In the limit 1 - u2+ 0, the energy 
emission rate in thismodel differs bythemultiplier~fromequation (4.25). The radiative 
hysteresis in this model has been revealed by Mineev er al(1981). If the inductance and 
capacity inhomogeneities descrihed by the additional perturbing terms (3.11) are taken 
into account, the expression for U’at 1 - u2 Q 1 changes drastically (see also the paper 
by Malomed and Ustinov (1990)): 

(4.26) w = 3(4F: + F$)(l  - u*)-j!*. 

Insertion of this into equation (4.17) leads to the asymptotic law of motion 

1 - U2 = [(4f$ + 8:)/3Zfp!j (4.27) 

instead of 1 - u2 = (4y/nf)* ensuing from equation (2.16). It is necessary to note that 
the additional dissipative term -/3qUx (with positive p), which, generally speaking, 
should be added to the left-hand side of equation (1.2), gives rise to a rate of energy 
lossesalsoproportionalto(1 - u2)-3!2 (cf (4.26)). Thisdissipative termplaysasignificant 
role in the theory of UIS (see, e.g., Olsen and Samuelsen 1984). Of course, the con- 
siderationof the ‘ultrarelativistic’kinks (1 - u2 Q 1) in the framework of thecDw theory 
ismeaningfulaslong as the‘Lorenz-contracted’kink’ssize -(1 - i rema re mains greater 
than the spacing of the underlying lattice. 

5. AC conductivity 

Let us proceed to the case when the system is subject to the action of the AC field (1.10) 
with a sufficiently small amplitude F. If a kink was located at a local minimum &,of an 



Interaction of phase soliton with charged impurities 711 

effective potential U @ ,  under the action of the AC drive it performs small oscillations 
described, in complex notation, by the equation 

f + + K ( E  - E,) = (n/4)~exp(iwt) (5.1) 

K E &U'(Eo) (5.2) 

where 

(recall that 7 = M-'!' y ;  see equation (1.2)). Equation (5.1) pertains to the SG model; 
in the case of the OSG model, the term $must be dropped. 

A solution to equation (5.1) is 

E = u(w)Fexp(iwt) u(w) = ( n / 4 ) ( ~ ~ - ~ 0 ~ + i j w ) ~ ' .  (5.3) 

q i  = iqwu(w)Fexp(iwr). 

A corresponding contribution to the AC current is (cf equation (2.15)) 

Proceeding from this expression, it is natural to define the AC conductivity (Malomed 
1988) as 

,401 = i m w ( 4 w ) )  (5.4) 

where (.  . .) indicates averaging in a disordered potential and, as above, n,.is the total 
density of the kinks. Further analysis is different for the discrete and continuum models. 

5.1. The discrete model 

Let us denote byp, the probability for a kink to reside in a potential well (figure l(6) 
or l(c)) in the absence of an external drive. In the version of the discrete model which 
corresponds to equations (2.8) and (2.9), i.e. neglects tunnelling under the poten- 
tial bumps (figure l(e) and lcf)), p M  = M-'(M + 1)-'(3M - 1). In the alternative 
version (corresponding to equations (2.13) and (2.14)), p M  = l M - z ( M  + 
1)-'(3M + 1)(2M - 1). If the kink resides in a well, it is easy to find the quantity (5.2): 

K = $M-*/~.C s inZ[(~/2) (a  - e,)] (5.5) 

where 0. varies within the interval n - 2n/M < B. < JC. If the kink resides in a wide 
valley between two potential steps, the correspondingprobability being 1 - p,. we may 
set K = 0. So, applying averaging in 0, to equations (5.3)-(5.9, we find that 

p(w) = - (in/4)qn0w{(l -pM)(w2 - ipm)-' 

x pM[(wZ - ipo)(wz - ~ / 2 f i  - i jw)l- 'f i) .  (5.6) 

In the limit M-, m the probability p m  vanishes, and equation (5.6) turns into the AC 

conductivityof the homogeneoussystem: &(w) = - (in/4)qnow(w2 - K' - iyw)-'. In 
the case of the OSG model, the difference reduces to dropping the term w z  in equation 
(5.6). 
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Setting y = 0 in (5.3) and (5.6), we see that the averaging in 0, transforms the 
resonant pole singularity of u(w) at w2 = s i n t o  the weaker root singularity of p(w)  at 
w z  = E/ZV%. The same effect has been noted by Malomed (1988) for M = 1. 

5.2. The continuum model 
Proceeding from the fundamental probability-density functional (3. l), it is straight- 
forward to find the probability distribution of the values K: 

p(K) = 2 ( 2 d ~ ) - ' " € - '  eXp(-KZ/212E2) (5.7) 
(ef (3.4)), where 1, is defined by (3.5). The averaging of equations (5.4) and (5.3) in K 
on the basis of the probability distribution (5.7) can be represented in an explicit form 
in two limiting cases: U? Q E and (12 S E. In the former case, 

Ip(w)l = ( z z / r , ) '~*(qn ,w / i )  Iog[i-z/w2(y2 + U')] (5.8) 
(we treat the logarithm in (5.8) as a large quantity). 

In the latter case, Ip(w)l= (z/4)qnow-' (which is the AC conductivity of the homo- 
geneous system). The full dependence Ip(w)\ for the continuum model is depicted 
schematically by curve a in figure 8. A maximum value pma* - qn&lfi is attained at 
w - 6. It is noteworthy that, in the continuum model, the dependence p(w) ,  dem- 
onstrates no trace of a resonant singularity at w2 - i-, unlike the dependence (5.6) for 
thediscretemode1,Thisisanother manifestationofthe trendnotedabovein the ~ c c a s e ;  
proceeding to the continuous model exerts a 'smoothing'effeet on the characteristics of 
the system. 

In the overdamped version of the continuum model, we obtain the following 
expressions: Ip(w)l = (h/Zz) ' /Z(qnow/i)  log[i.'/(~p.)~] at w i <  i., and Ip(w)l = 
(x/4p)qno at wp S f ,  the latter expression being that for the homogeneous system. The 
full dependence Ip(w)l is depicted by curve B in figure 8. 

In conclusion, it is relevant to note that in our model the contribution of the eon- 
tinuousspeetrum to thesolitonic~~eonductivity isnegligible, incontrast with themodel 
of a homogeneous overdamped system studied by Horovitz and Trullinger (1984). 

6. Conclusion 

The results of this paper, as well as those obtained by Malomed (1988,1989), lead to the 
following inference: the general consequences of the idea that kinks trapped initially by 
an effective disordered potential escape gradually on increase in the DC drive or oscillate 
under the action of AC drive are more or less insensitive to details of the model. 

To conclude the paper, let us briefly discuss the possibility of experimental veri- 
fieationof the principal predictionsobtainedin the frameworkofthe present model. First 
ofall, both versionsofthemodel (SGandosG) demonstrateaconductivitythreshold, the 
threshold voltage being much larger in the OSG model (see figure 4). The standard 
(Maki's) modelof the solitonicconductivityalso demonstratesa threshold, but itsnature 
is altogether different. A noticeable feature of our oSG model is the dependence of the 
threshold voltagef, on the density I-' of the charged impurities, given byequation (3.7): 

f?, - i'/log(ni') - !-'/log(ni') (6.1) 
(recall that the renormalized coupling constant 2' in equation (1.9) includes the multi- 
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plier 1- ' ,  1 being the mean distance between the charged impurities; equation (6.1) 
pertains to  the realistic case 1 d 1). In principle, the impurity density I-' may be exper- 
imentally controllable by doping the system, which opens the way to verify the relation 
(6.1). 

The fact that the maximum conductivity in our model is proportional to the total 
density no of the kinks (which is assumed to be conserved) can also be amenable to an 
experimental test, since the density may depend on an initial state of a sample. Note, 
however, that the threshold voltage contains only a weak logarithmic dependence on no 
according to equation (6.1). 

Finally, one may try to relate the strongly pronounced hysteretic behaviour of the 
cvc, predicted by the SG version of our model, to hystereses sometimes observed in 
experiments with CDW systems. However, this version of the model may only be applied 
to systems with weak dissipation, which is difficult to realize in real CDW conductors. 

We defer a minute comparison of our results with available experimental data to 
another paper. A complicating role may be played by the fact that, in real near- 
commensurate systems, different mechanisms, e.g. Maki's and ours, may simul- 
taneously contribute to the solitonic conductivity. 
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